
5
MySQL

5.1 INTRODUCTION

Many of the applications that a Web developer wants to use can be made
easier by the use of a standardized database to store, organize, and
access information. MySQL is an Open Source (GPL) Standard Query
Language (SQL) database that is fast, reliable, easy to use, and suitable
for applications of any size. SQL is the ANSI-standard database query
language used by most databases (though all have their nonstandard
extensions).

MySQL can easily be integrated into Perl programs by using the Perl
DBI (DataBase Independent interface) module. DBI is an Application Pro-
gram Interface (API) that allows Perl to connect to and query a number of
SQL databases (among them MySQL, mSQL, PostgreSQL, Oracle, Sybase,
and Informix).

If you installed Linux as suggested in Chapter 2, MySQL and DBI are
already installed.

5.2 TUTORIAL

Following the Swiss Army knife theory (20 percent of the functions give you
80 percent of the utility), a few SQL commands go a long way to facilitate
learning MySQL/Perl/DBI.

To illustrate these, we create a simple database containing information
about some (fictional) people. Eventually, we’ll show how to enter this
information from a form on the Web (see Chapter 7), but for now we
interface with SQL directly.

109

110 PART I Structural

First, try to make a connection to our MySQL server as the root

MySQL user:

$ mysql -u root

N The MySQL root user is different from the Linux root user. The MySQL root user
is used to administer the MySQL server only.

If you see the following output:

ERROR 2002: Can’t connect to local MySQL server through socket
´/var/lib/mysql/mysql.sock´(2)

it likely means the MySQL server is not running. If your system is set up
securely, it shouldn’t be running, because you had no reason, before now,
for it to be running. Use chkconfig as root to make sure it starts the next
time the machine boots, and then start it by hand as follows:

chkconfig mysqld on
/etc/init.d/mysqld start

Now you should be able to connect (not logged in as the Linux root

user):

$ mysql -u root

If not, see the MySQL log file at /var/log/mysqld.log. If so, you’ll see a
welcome message and the MySQL prompt:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 3.23.36

Type ´help;´ or ´\h´ for help. Type ´\c´ to clear the buffer

mysql>

As suggested, enter help; at the prompt. A list of MySQL commands
(not to be confused with SQL commands) will be displayed. These allow
you to work with the MySQL server. For grins, enter status; to see the
status of the server.

To illustrate these commands, we will create a database called people

that contains information about people and their ages.

CHAPTER 5 MySQL 111

5.2.1 The SHOW DATABASES and CREATE DATABASE Commands

First, we need to create the new database. Check the current databases to
make sure a database of that name doesn’t already exist; then create the
new one, and verify the existence of the new database:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
+----------+
2 rows in set (0.00 sec)

mysql> CREATE DATABASE people;

Query OK, 1 row affected (0.00 sec)

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| people |
| test |
+----------+
3 rows in set (0.00 sec)

SQL commands and subcommands (in the previous example, CREATE is
a command; DATABASE is its subcommand) are case-insensitive. The name
of the database (and table and field) are case sensitive. It’s a matter of
style whether one uses uppercase or lowercase, but traditionally the SQL
commands are distinguished by uppercase.

One way to think of a database is as a container for related tables. A
table is a collection of rows, each row holding data for one record, each
record containing chunks of information called fields.

5.2.2 The USE Command

Before anything can be done with the newly created database, MySQL has
to connect to it. That’s done with the USE command:

mysql> USE people;

112 PART I Structural

5.2.3 The CREATE TABLE and SHOW TABLES Commands

Each table within the database must be defined and created. This is done
with the CREATE TABLE command.

Create a table named age information to contain an individual’s first
name, last name, and age. MySQL needs to know what kind of data can
be stored in these fields. In this case, the first name and the last name are
character strings of up to 20 characters each, and the age is an integer:

mysql> CREATE TABLE age information (
-> lastname CHAR(20),
-> firstname CHAR(20),
-> age INT
->);

Query OK, 0 rows affected (0.00 sec)

It appears that the table was created properly (it says OK after all),
but this can be checked by executing the SHOW TABLES command. If an error
is made, the table can be removed with DROP TABLE.

When a database in MySQL is created, a directory is created with the
same name as the database (people, in this example):

ls -l /var/lib/mysql
total 3
drwx------ 2 mysql mysql 1024 Dec 12 15:28 mysql
srwxrwxrwx 1 mysql mysql 0 Dec 13 07:19 mysql.sock
drwx------ 2 mysql mysql 1024 Dec 13 07:24 people
drwx------ 2 mysql mysql 1024 Dec 12 15:28 test

Within that directory, each table is implemented with three files:

ls -l /var/lib/mysql/people
total 10
-rw-rw---- 1 mysql mysql 8618 Dec 13 07:24 age_information.frm
-rw-rw---- 1 mysql mysql 0 Dec 13 07:24 age_information.MYD
-rw-rw---- 1 mysql mysql 1024 Dec 13 07:24 age_information.MYI

mysql> SHOW TABLES;
+------------------+
| Tables_in_people |
+------------------+
| age_information |
+------------------+
1 row in set (0.00 sec)

This example shows two MySQL datatypes: character strings and
integers. Other MySQL data types include several types of integers

CHAPTER 5 MySQL 113

(for a complete discussion of MySQL’s data types, see www.mysql.com/

documentation/mysql/bychapter/manual Reference.html#Column types):

TINYINT −128 to 127 (signed)
or 0 to 255 (unsigned)

SMALLINT −32768 to 32767 (signed)
or 0 to 65535 (unsigned)

MEDIUMINT −8388608 to 8388607 (signed)
or 0 to 16777215 (unsigned)

INTEGER −2147483648 to 2147483647 (signed)
(same as INT) or 0 to 4294967295 (unsigned)

BIGINT −9223372036854775808 to 9223372036854775807
(signed)
or 0 to 18446744073709551615 (unsigned)

and floating points:

FLOAT

DOUBLE

REAL (same as DOUBLE)

DECIMAL

NUMERIC (same as DECIMAL)

There are several data types to represent a date:

DATE YYYY-MM-DD

DATETIME YYYY-MM-DD HH:MM:SS

TIMESTAMP YYYYMMDDHHMMSS
or YYMMDDHHMMSS
or YYYYMMDD or YYMMDD

TIME HH:MM:SS

YEAR YYYY or YY

The table age information used the CHAR character data type. The fol-
lowing are the other character data types. Several have BLOB in their name—
a BLOB is a Binary Large OBject that can hold a variable amount of data.
The types with TEXT in their name are just like their corresponding BLOBs

114 PART I Structural

except when matching is involved: The BLOBs are case-sensitive, and the
TEXTs are case-insensitive.

VARCHAR variable-length string up to 255 characters

TINYBLOB maximum length 255 characters
TINYTEXT

BLOB maximum length 65535 characters
TEXT

MEDIUMBLOB maximum length 16777215 characters
MEDIUMTEXT

LONGBLOB maximum length 4294967295 characters
LONGTEXT

5.2.4 The DESCRIBE Command

The DESCRIBE command gives information about the fields in a table. The
fields created earlier—lastname, firstname, and age—appear to have been
created correctly.

mysql> DESCRIBE age information;

+-----------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+----------+------+-----+---------+-------+
lastname	char(20)	YES		NULL	
firstname	char(20)	YES		NULL	
age	int(11)	YES		NULL	
+-----------+----------+------+-----+---------+-------+
3 rows in set (0.00 sec)

The command SHOW COLUMNS FROM age information; gives the same in-
formation as DESCRIBE age information; but DESCRIBE involves less typing.
(If you’re really trying to save keystrokes, you could abbreviate DESCRIBE

as DESC.)

5.2.5 The INSERT Command

For the table to be useful, we need to add information to it. We do so with
the INSERT command:

mysql> INSERT INTO age information
-> (lastname, firstname, age)
-> VALUES (´Wall´, ´Larry´, 46);

Query OK, 1 row affected (0.00 sec)

CHAPTER 5 MySQL 115

The syntax of the command is INSERT INTO, followed by the table in
which to insert, a list within parentheses of the fields into which information
is to be inserted, and the qualifier VALUES followed by the list of values
in parentheses in the same order as the respective fields.1

5.2.6 The SELECT Command

SELECT selects records from the database. When this command is executed
from the command line, MySQL prints all the records that match the query.
The simplest use of SELECT is shown in this example:

mysql> SELECT * FROM age information;
+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
| Wall | Larry | 46 |
+----------+-----------+------+
1 row in set (0.00 sec)

The * means “show values for all fields in the table”; FROM specifies the
table from which to extract the information.

The previous output shows that the record for Larry Wall was added
successfully. To experiment with the SELECT command, we need to add a
few more records, just to make things interesting:

mysql> INSERT INTO age information
-> (lastname, firstname, age)
-> VALUES (´Torvalds´, ´Linus´, 31);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO age information
-> (lastname, firstname, age)
-> VALUES (´Raymond´, ´Eric´, 40);

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM age information;
+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
Wall	Larry	46
Torvalds	Linus	31
Raymond	Eric	40
+----------+-----------+------+
3 rows in set (0.00 sec)

1We did extensive research to determine that none of the names used in this chapter belong to
real people.

116 PART I Structural

There are many ways to use the SELECT command—it’s very flexible.
First, sort the table based on lastname:

mysql> SELECT * FROM age information
-> ORDER BY lastname;

+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
Raymond	Eric	40
Torvalds	Linus	31
Wall	Larry	46
+----------+-----------+------+
3 rows in set (0.00 sec)

Now show only the lastname field, sorted by lastname:

mysql> SELECT lastname FROM age information
-> ORDER BY lastname;

+----------+
| lastname |
+----------+
| Raymond |
| Torvalds |
| Wall |
+----------+
3 rows in set (0.00 sec)

Show the ages in descending order:

mysql> SELECT age FROM age information ORDER BY age DESC;
+------+
| age |
+------+
| 46 |
| 40 |
| 31 |
+------+
3 rows in set (0.00 sec)

Show all the last names for those who are older than 35:

mysql> SELECT lastname FROM age information WHERE age > 35;
+----------+
| lastname |
+----------+
| Wall |
| Raymond |
+----------+
2 rows in set (0.00 sec)

CHAPTER 5 MySQL 117

Do the same, but sort by lastname:

mysql> SELECT lastname FROM age information
-> WHERE age > 35 ORDER BY lastname;

+----------+
| lastname |
+----------+
| Raymond |
| Wall |
+----------+
2 rows in set (0.00 sec)

5.2.7 The UPDATE Command

Since the database is about people, information in it can change (people
are unpredictable like that). For instance, although a person’s birthday is
static, their age changes. To change the value in an existing record, we can
UPDATE the table. Let’s say the fictional Larry Wall has turned 47:

mysql> SELECT * FROM age information;
+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
Wall	Larry	46
Torvalds	Linus	31
Raymond	Eric	40
+----------+-----------+------+
3 rows in set (0.00 sec)

mysql> UPDATE age information SET age = 47
-> WHERE lastname = ´Wall´;

Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM age information;
+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
Wall	Larry	47
Torvalds	Linus	31
Raymond	Eric	40
+----------+-----------+------+
3 rows in set (0.00 sec)

Be sure to use that WHERE clause; otherwise, if we had only entered UPDATE

age information SET age = 47, all the records in the database would have
been given the age of 47!

118 PART I Structural

Although this might be good news for some people in these records
(how often have the old-timers said “Oh, to be 47 years old again”—OK,
probably not), it might be shocking news to others.

This method works, but it requires the database to know that Larry is
46, turning 47. Instead of keeping track of this, for Larry’s next birthday
we simply increment his age:

mysql> SELECT * FROM age information;

+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
Wall	Larry	47
Torvalds	Linus	31
Raymond	Eric	40
+----------+-----------+------+
3 rows in set (0.00 sec)

mysql> UPDATE age information SET age = age + 1
-> WHERE lastname = ´Wall´;

Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM age information;

+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
Wall	Larry	48
Torvalds	Linus	31
Raymond	Eric	40
+----------+-----------+------+
3 rows in set (0.00 sec)

5.2.8 The DELETE Command

Sometimes we need to delete a record from the table (don’t assume the
worst—perhaps the person just asked to be removed from a mailing list,
which was opt-in in the first place, of course). This is done with the DELETE

command:

mysql> DELETE FROM age information WHERE lastname = ´Raymond´;
Query OK, 1 row affected (0.00 sec)

CHAPTER 5 MySQL 119

mysql> SELECT * FROM age information;
+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
| Wall | Larry | 48 |
| Torvalds | Linus | 31 |
+----------+-----------+------+
2 rows in set (0.00 sec)

Eric is in good company here, so put him back:

mysql> INSERT INTO age information
-> (lastname, firstname, age)
-> VALUES (´Raymond´, ´Eric´, 40);

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM age information;
+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
Wall	Larry	48
Torvalds	Linus	31
Raymond	Eric	40
+----------+-----------+------+
3 rows in set (0.00 sec)

5.2.9 Some Administrative Details

All these examples have been executed as the root MySQL user, which,
as you might imagine, is not optimal from a security standpoint. A better
practice is to create a MySQL user who can create and update tables as
needed.

First, as a security measure, change the MySQL root password when
logging in to the server:

mysqladmin password IAmGod

Now when mysql executes, a password must be provided using the -p

switch. Here is what would happen if we forgot the -p:

$ mysql -u root
ERROR 1045: Access denied for user: ´root@localhost´ (Using password: NO)

Try again using -p. When prompted for the password, enter the one given
previously:

120 PART I Structural

Recall that the MySQL user is not the same as a Linux user. The mysqladmin

command changes the password for the MySQL user only, not the Linux user. For
security reasons, we suggest that the MySQL password never be the same as the
password used to log in to the Linux machine. Also, the password IAmGod, which
is clever, is a bad password for many reasons, including the fact that it is used as
an example in this book. For a discussion on what makes a password good or bad,
we suggest you read Hacking Linux Exposed [Hatch+ 02].

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 15 to server version: 3.23.36

Type ´help;´ or ´\h´ for help. Type ´\c´ to clear the buffer
mysql>

Doing all the SQL queries in the people database as the MySQL root

user is a Bad Idea (see HLE if you want proof of this). So let’s create a new
user. This involves modifying the database named mysql, which contains
all the administrative information for the MySQL server, so first we use
the mysql database and then grant privileges for a new user:

mysql> USE mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> GRANT SELECT,INSERT,UPDATE,DELETE

-> ON people.*
-> TO apache@localhost
-> IDENTIFIED BY ´LampIsCool´;

Query OK, 0 rows affected (0.00 sec)

The user apache (the same user that runs the webserver) is being
granted the ability to do most everything within the database, including
being able to delete entries in tables within the people database. However,
apache cannot delete the people database, only entries within the tables
in the database. The user apache can access the people database from
localhost only (instead of being able to log in over the network from an-
other machine).

The IDENTIFIED BY clause in the SQL command sets the apache user’s
password to LampIsCool. Setting the password is necessary only the first

CHAPTER 5 MySQL 121

time permissions are granted for this user—later, when the apache user is
given permissions in other databases, the password doesn’t need to be reset.

To verify that these changes were made, log in as apache:

$ mysql -u apache -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 27 to server version: 3.23.36

Type ´help;´ or ´\h´ for help. Type ´\c´ to clear the buffer

mysql> USE people
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> SHOW TABLES;
+------------------+
| Tables_in_people |
+------------------+
| age_information |
+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM age information;
+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
Wall	Larry	48
Torvalds	Linus	31
Raymond	Eric	40
+----------+-----------+------+
3 rows in set (0.00 sec)

5.2.10 Summary

As discussed, these commands are enough to do basic things with MySQL:

SHOW DATABASES
CREATE DATABASE
USE
CREATE TABLE
SHOW TABLES
DESCRIBE
INSERT
SELECT
UPDATE
DELETE
GRANT

122 PART I Structural

5.3 DATABASE INDEPENDENT INTERFACE

Running MySQL commands from the shell is well and good the first
12 times it has to be done. After that, the typical lazy programmer starts
thinking of ways to automate the process. Here, the answer is Perl and the
DataBase Independent interface (DBI). DBI enables one to write programs
to automate database maintenance and to write other scripts to interface
with MySQL.

DBI is a Perl module that provides methods to manipulate SQL data-
bases. With DBI, one can connect to a database within a Perl script and
issue all kinds of queries, including SELECT, INSERT, and DELETE. For now,
we create Perl scripts that can be run from the shell. Later, we’ll use
CGI, mod perl, Embperl, Mason, and PHP to hook database independent
interfaces into web programs.

First, a quick example. We put all these DBI examples in a direc-
tory that is under /var/www/ so that the examples are downloadable from
www.opensourcewebbook.com/. In the real world, we do not suggest you cre-
ate a directory under /var/www/ to create arbitrary Perl programs, but for
our purposes, it just makes life easier when downloading all the examples.
Create the directory and go there:

$ mkdir /var/www/bin
$ cd /var/www/bin

The first example demonstrates how to connect to a database. This
code is stored in the file /var/www/bin/connect.pl and online at http://

localhost/mysql/connect.pl or www.opensourcewebbook.com/mysql/connect

.pl. The content of connect.pl is:

#!/usr/bin/perl -w
connect.pl

use the DBI module
use DBI;

use strict, it is a Good Idea
use strict;

connect to the database, assigning the result to $dbh
my $dbh = DBI->connect(´DBI:mysql:people´, ´apache´, ´LampIsCool´);

CHAPTER 5 MySQL 123

die if we failed to connect
die "Can’t connect: " . DBI->errstr() unless $dbh;

all is well!
print "Success: connected!\n";

disconnect from the MySQL server
$dbh->disconnect();

First, the use DBI method tells Perl to use the DBI module. This allows
us to use all the methods in this class.

Calling the connect() method causes the Perl script to connect to the
MySQL database using the Perl DBI class. The first argument to this
method is the database to which you want to connect. In this example,
the string DBI:mysql:people indicates that it should connect with the DBI
module to the database people, which is housed on the local MySQL server.
The second and third arguments to the connect() method are the username
and password used to connect. Here user apache and the supersecret pass-
word are passed. If successful, connect() returns a database handle that is
assigned to $dbh.

If one day we decide that we want to migrate to another database, such as Oracle,
we merely need to change mysql to oracle, and the rest of the script stays exactly
the same, assuming the script is not executing a query that is specific to that database
server—certainly the case with the scripts in this book. Design for portability!

If connect() returns false, the script dies, printing the error string re-
turned by the errstr() method. If the script doesn’t die, it prints a message
stating that all is well. This gives us a warm, fuzzy feeling (for maximum
fuzzy feeling, perhaps we should have printed “hello, world”).

The last thing done is to execute the disconnect() method, allowing
the Perl script and database to properly shut down the connection. This is
only polite, and if you don’t call disconnect(), the script may generate an
error message, and the MySQL server will not like you.

124 PART I Structural

Executing this program from the shell produces:

$./connect.pl
Success: connected!

We’ve connected. But by itself, connecting isn’t exceptionally use-
ful, so let’s see what records are in the age information table. Create (or
download) the script /var/www/bin/show ages.pl. Online, it is at http://

localhost/mysql/show ages.pl or www.opensourcewebbook.com/mysql/show

ages.pl. Its contents are as follows:

#!/usr/bin/perl -w
show ages.pl

use DBI;

use strict;

connect to the server, and if connect returns false,
die() with the DBI error string
my $dbh = DBI->connect(´DBI:mysql:people´, ´apache´, ´LampIsCool´)

or die "Can’t connect: " . DBI->errstr();

prepare the SQL, die() if the preparation fails
my $sth = $dbh->prepare(´SELECT * FROM age information´)

or die "Can’t prepare SQL: " . $dbh->errstr();

execute the SQL, die() if it fails
$sth->execute()

or die "Can’t execute SQL: " . $sth->errstr();

loop through each record of our table,
$sth->fetchrow() returns the next row,
and we store the values in $ln, $fn and $age
my($ln, $fn, $age);
while (($ln, $fn, $age) = $sth->fetchrow()) {

print "$fn $ln, $age\n";
}

finish the statement handle, disconnect from the server
$sth->finish();
$dbh->disconnect();

Failure to connect is handled differently by this program. It executes
connect() and uses the or to mimic an unless. If the connect() fails, the
script dies.

The script then prepares the SQL query "SELECT * FROM age information".
The query is just like that we might have typed into the MySQL program in

CHAPTER 5 MySQL 125

the earlier examples (except the command terminator ; is not required in
the prepare() method). The prepare() method returns a statement handle
object that can then be used to execute the SQL query by calling the
execute() method. Note that with each of these calls, failure is handled
with the or die() code.

The results of the SELECT query are handled with a while loop. The
fetchrow() method returns a list of data for the next row of data that is
returned by the query, which is then assigned to $ln (last name), $fn (first
name), and $age. The information is then printed.

At the end, the finish() method is executed to properly clean up and
because it is the right thing to do. Running this from the shell produces:

$./show ages.pl
Larry Wall, 48
Linus Torvalds, 31
Eric Raymond, 40

How might we enter a new record into the table? This code is in the file
/var/www/bin/insert.pl. The entire contents of this program can be found
online at http://localhost/mysql/insert.pl or www.opensourcewebbook.com/
mysql/insert.pl. Here is the good part:
print a nice dashed line
print ´-´ x 40, "\n\n";

now, prompt for and read in the data for the new record
print ´Enter last name: ´;
chomp($ln = <STDIN>);
print ´Enter first name: ´;
chomp($fn = <STDIN>);
print ´Enter age: ´;
chomp($age = <STDIN>);

prepare SQL for insert
$sth = $dbh->prepare(´INSERT INTO age information

(
lastname,
firstname,
age

)
VALUES

(
?,
?,
?

)´)
or die "Can’t prepare SQL: " . $dbh->errstr();

126 PART I Structural

insert the record - note the arguments to execute()
$sth->execute($ln, $fn, $age)

or die "Can’t execute SQL: " . $sth->errstr();

print another dashed line
print "\n", ´-´ x 40, "\n\n";

Before new data is inserted into the table, the script connects to the server
and shows the current contents, just as in show ages.pl.

Then the script asks the user to enter the last name, first name, and
age of the person for the new record and chomp()s the newlines.

Be sure to use those question marks as placeholders. This prevents the need to
escape quotes and other nasty characters, thus making the code more secure. Also,
in this case, the last name is defined in the tables as 20 characters of text. If the
user enters more than 20 characters, only the first 20 are used—hence, no overflow
problem (although it wouldn’t hurt to double-check the length of the input strings).

The next step is to prepare SQL for the INSERT query. Again, it looks
much like what one would have typed in directly to SQL, with whitespace
characters for readability, except that it has those three question marks.
Those question marks are placeholders for the contents of the variables
in the execute() method. The variables $ln, $fn, and $age are inserted into
the query where the question marks are, in that order.

To check that the insert worked, the script displays the contents of the
table after the INSERT is executed. Then the script cleans up after itself by
finishing the statement handle and disconnecting from the MySQL server.

Executing that code produces:

$./insert.pl
Larry Wall, 48
Linus Torvalds, 31
Eric Raymond, 40
--
Enter last name: Ballard
Enter first name: Ron
Enter age: 31

--

CHAPTER 5 MySQL 127

Larry Wall, 48
Linus Torvalds, 31
Eric Raymond, 40
Ron Ballard, 31

5.4 TABLE JOINS

In the world of relational databases, data often has complex relationships
and is spread across multiple tables. Sometimes it is necessary to grab
information from one table based on information in another. This requires
that the two tables be JOINed.

For an example, we create a new table in the people database called
addresses that contains information about people’s addresses (surprise!).
First, it must be created as follows:

mysql> CREATE TABLE addresses (
-> lastname CHAR(20),
-> firstname CHAR(20),
-> address CHAR(40),
-> city CHAR(20),
-> state CHAR(2),
-> zip CHAR(10)
->);

The table needs some data:

mysql> INSERT INTO addresses
-> (lastname, firstname, address, city, state, zip)
-> VALUES ("Wall", "Larry", "Number 1 Perl Way",
-> "Cupertino", "CA", "95015-0189"
->);

mysql> INSERT INTO addresses
-> (lastname, firstname, address, city, state, zip)
-> VALUES ("Torvalds", "Linus", "123 Main St.",
-> "San Francisco", "CA", "94109-1234"
->);

mysql> INSERT INTO addresses
-> (lastname, firstname, address, city, state, zip)
-> VALUES ("Raymond", "Eric", "987 Oak St.",
-> "Chicago", "IL", "60601-4510"
->);

mysql> INSERT INTO addresses
-> (lastname, firstname, address, city, state, zip)
-> VALUES ("Kedzierski", "John", "3492 W. 75th St.",
-> "New York", "NY", "10010-1010"
->);

128 PART I Structural

mysql> INSERT INTO addresses
-> (lastname, firstname, address, city, state, zip)
-> VALUES ("Ballard", "Ron", "4924 Chicago Ave.",
-> "Evanston", "IL", "60202-0440"
->);

To verify the tables were populated, do this:

mysql> SELECT * FROM age information;

+------------+-----------+------+
| lastname | firstname | age |
+------------+-----------+------+
Wall	Larry	46
Torvalds	Linus	31
Raymond	Eric	40
Kedzierski	John	23
Ballard	Ron	31
+------------+-----------+------+
5 rows in set (0.00 sec)

mysql> SELECT * FROM addresses;

+----------+---------+-----------------+--------------+-----+----------+
|lastname |firstname|address |city |state|zip |
+----------+---------+-----------------+--------------+-----+----------+
Wall	Larry	# 1 Perl Way	Cupertino	CA	95015-0189
Torvalds	Linus	123 Main St.	San Francisco	CA	94109-1234
Raymond	Eric	987 Oak St.	Chicago	IL	60601-4510
Kedzierski	John	3492 W. 75th St.	New York	NY	10010-1010
Ballard	Ron	4924 Chicago Ave.	Evanston	IL	60202-0440
+----------+---------+-----------------+--------------+-----+----------+
5 rows in set (0.00 sec)

Now, on to the JOINs. Let’s say we want to find out what city our
under-40-year-old people live in. This requires looking up information in
two tables: To find out who is under 40, we look in age information, and
to find out the city, we look in addresses. Therefore, we need to tell the
SELECT command about both tables.

Because both tables are being used, we need to be specific about which
table a particular field belongs to. In other words, instead of saying SELECT

city, we need to say what table that field is in, so we say SELECT addresses.

city. The addresses.city tells MySQL that the table is addresses and the
field is city.

Moreover, we need to hook the two tables together somehow—we do
so with the following command by making sure the lastname from the

CHAPTER 5 MySQL 129

addresses row matches the lastname from the age information row. Ditto
for the firstname. So, our command is:

mysql> SELECT addresses.city
-> FROM addresses, age information
-> WHERE age information.age < 40 AND
-> addresses.lastname = age information.lastname
-> AND addresses.firstname = age information.firstname;

+---------------+
| city |
+---------------+
| San Francisco |
| New York |
| Evanston |
+---------------+
3 rows in set (0.02 sec)

In English, we are saying, “give me the city for all the people with ages
less than 40, where the last names and first names match in each row.”

Let’s grab the last names and zip codes for all those 40 and over, and
order the data based on the last name:

mysql> SELECT addresses.lastname, addresses.zip
-> FROM addresses, age information
-> WHERE age information.age >= 40 AND
-> addresses.lastname = age information.lastname AND
-> addresses.firstname = age information.firstname
-> ORDER BY addresses.lastname;

+----------+------------+
| lastname | zip |
+----------+------------+
| Raymond | 60601-4510 |
| Wall | 95015-0189 |
+----------+------------+
2 rows in set (0.02 sec)

As you can see, there are lots of different ways to query more than one
table to get the exact information desired.

5.5 LOADING AND DUMPING A DATABASE

We can load a database or otherwise execute SQL commands from a file. We
simply put the commands or database into a file—let’s call it mystuff.sql—
and load it in with this command:

$ mysql people < mystuff.sql

130 PART I Structural

We can also dump out a database into a file with this command:

$ mysqldump people > entiredb.sql

For fun, try the mysqldump command with the people database (a gentle
reminder: the password is LampIsCool):

$ mysqldump -uapache -p people
Enter password:

Notice that this outputs all the SQL needed to create the table and
insert all the current records. For more information, see man mysqldump.

5.6 SUMMARY

MySQL is a powerful, sophisticated, and easy-to-use SQL database pro-
gram. Using Perl and DBI, one can easily create programs to automate
database management tasks. With this knowledge, the prospective web de-
signer should be able to construct a database-based (for lack of a better
term) web site that is portable, sophisticated, easy to manage, and profes-
sional appearing. We have examined only a small subset of all that MySQL
provides (our 80/20 rule in effect).

5.7 RESOURCES

Books
[DuBois+ 99] DuBois, Paul, and Michael Widenius. MySQL. Covers MySQL

for the newbie and the experienced user.
[Hatch+ 02] Hatch, Brian, James Lee, and George Kurtz. Hacking Linux

Exposed: Linux Security Secrets and Solutions, Second Edition. Be sure to
read the discussion on how to create good passwords.

[Yarger+ 99] Yarger, Randy Jay, George Reese, and Tim King. MySQL and
mSQL. An excellent book that covers both MySQL and mSQL, two
common databases on Linux systems.

Web Site
MySQL home page: www.mysql.com/

